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Note 

Application of a Semi-implicit Finite Difference 
Scheme to Heat Generation in Explosives 

1. INTRODUCTION 

Materials that undergo exothermic chemical decomposition reactions can exhibit 
self-heating phenomena. At steady state the heat lost by conduction and/or convec- 
tion is just balanced by the heat generated; however, above a certain critical tem- 
perature more heat will be generated than can be removed by these means and the 
temperature will increase to ignition or explosion [l-5]. When the primary heat 
loss mechanism is conduction and the chemical reaction is first-order the paper of 
Frank-Kamenetzky [l] is the definitive work for determination of the critical tem- 
perature. Zinn and Mader [6] carried out numerical calculations on the time 
dependent problem to determine the induction time (time to explosion) for slab, 
cylindrical, and spherical geometries exposed to a surrounding temperature above 
critical, however their procedure is not applicable to situations involving nonlinear 
thermal properties, phase changes, or time dependent boundary conditions. In the 
present note the application of a recently introduced symmetric semi-implicit (SSI) 
finite difference scheme [7] to the problems of internal heat generation and thermal 
initiation of explosion is reported. 

2. THE SSI SCHEME 

The heat conduction equation with internal heat generation is given by 

pC(fh/dt) = LV214 + H(u) (1) 

where u is the temperature, ,? the thermal conductivity, p the density, C the heat 
capacity, and H(u) the rate of heat generation. Writing (1) in the SSI scheme of 
Livne and Glasner [7] for the cell (i). 

pcvi(u~+ ’ - u{)/dt = - c J,A, + H(uj) vi + q; (2) 

where Jik is the heat flux from cell (i) to (k), -4, is the area bounding the (i) and (k) 
cells, Vi is the volume of cell (i), ui j+’ is its temperature at the end of the time step 
At and U< its .temperature at the beginning of the time step. The term qi is needed to 
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exactly conserve energy [7] at the interface between cell (i) and its neighbors. For 
one independent spatial variable in plane, cylindrical or spherical symmetry, 

and after summing over cells (k) adjacent to ii) as indicate 

qj = (A/2 dxj[(u;+ 1 +21i-~i;i-~-i-1jAi,i+l +(u-j_ltui-2t:~:--~-1j.~i;~~i! 
( 4 j 

where u kP ’ is the temperature of the cell (k j at the time step prior to that indicated 
by pi;. Defining the geometric factors 

Gi+ = Aji+ l Ax/l, - 

and the Fourier number 

F= i. AtjpC Ax’ 

some algebra yields, 

ulf’= F(uj+,Gj+ +u:~,Gi~j+h,+Q;+~i 
I l+F(G;+ +Gj-) 

where the thermal properties are considered constant, 

3. NUMERICAL EXAMPLE: CONSTANT HEAT ADDITION 

The SSI scheme (5) was tested for the case of constant heat addition in a slab of 
RDX with half-thickness 1 cm. The physical properties of RDX are taken from [6]. 
The initial temperature of the slab was 300” K and the wall temperature was fixed 
at 300” K. The heat generation term was calculated from the data in [6] for a con- 
stant reaction temperature of 500” K. The temporal and spatial temperature dis- 
tributions calculated by the SSI method are shown in Fig. 1 for Fourier Numbers of 
1.56 and 3.90. The exact solution for this constant heat addition probiem given by 
Carslaw and Jaeger [S] is also shown in Fig. 1 for comparison. 
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FIG. 1. Temperature profiles in a 1 cm half-thickness RDX slab with constant heat generation. Cur- 
ves are exact solutions, symbols are present SSI scheme calculations. 

4. NUMERICAL EXAMPLE: HEAT GENERATION BY FIRST-ORDER CHEMICAL REACTION 

The SSI difference scheme was also tested for heat generation by first-order 
chemical reaction. For this case 

H(u) = QpZ exp( -E/Ru) 

where Q is the heat of reaction, Z is the Arrhenius pre-exponential frequency con- 
stant, E is the activation energy, and R the gas constant. Equation (5) was used to 
calculate the temperature profiles in 2.54 cm thick slabs and 2.54 cm diameter 
spheres of RDX beginning with the RDX uniformly at 300” K and the wall tem- 
perature u,,,. The calculation advanced by time steps until a temperature reached 
5000” K, at which point an explosion was considered to have been initiated and the 
induction time, fi recorded. The results are shown in Fig. 2, where they are com- 
pared with the numerical calculation of Zinn and Mader [6]. An explicit finite dif- 
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FIG 2. Induction time to explosion in 2.54 cm slabs and 2.54 cm diameter spheres of REX. Curves 
are calcu!ations of [6], symbols are present calculations. 

ference scheme was also used to compute li over the limrted range for which it was 
practical. These results are also displayed on Fig. 2. 

5. CONCLUSIONS 

Experience with the SSI scheme has shown that the time step is limited in prac- 
tice by the nature of the heat generation term. While the time step must, of course, 
be small compared to the induction time, steps up to 50 times greater than allowed 
For the explicit scheme can give sufficient accuracy. The SSI results compare well 
with the results of exact calculations, calculations using the explicit scheme. and 
with other work employing less flexible methods ES]. Even better results could be 
achieved if the heat addition term in Eq. (2) were forward centered in time by using 
H(z~<+~‘~). where LI-:+‘!~=(u(+zI~+~)/~~ 

ACKNOWLEDGMENTS 

The author is grateful to David Wagnon and Anthony Taliancich for many helpfui discussions concer- 
ning the coding and chemistry of this work. The project was supported by Air Force Contract F49620- 
82-C-0035. 



490 JOHN W. SHELDON 

REFERENCES 

1. D. A. FRANK-KEMENETZKY, Acta Physicochim. CJRSS 10 (1939), 365. 
2. P. L. CHAMBRE, J. Chem. Phys. 20 (1952), 1795. 
3. A. R. SHOUMAN, A. B. DONALDSON, AND H. Y. TSAO, Combust. Flame 23 (1974), 17. 
4. A. R. SHOUMAN AND A. B. DONALDSON, Combust. Flame 29 (1977), 213. 
5. W. KORDYLEWSKI, Combust. Flame 34 (1979), 109. 
6. J. ZINN AND C. L. MADER, J. Appl. Phys. 31 (1969), 323. 
I. E. LIVNE AND A. GLASNER, J. Camp. Phys. 58 (1985), 59. 
8. H. S. CARSLAW AND J. C. JAEGER, “Conduction in Solids” (Oxford Univ. Press, 1959), p. 130 

RECEIVED July 17, 1985; REVISED November 22, 1985 

JOHN W. SHELDON 

Physics Department, 
Florida International University, 

Miami, Florida 33199 


